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Conservation of Particle Number in the Nuclear Pairing Model* 
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The Euler-Lagrange equations corresponding to a Bardeen-Cooper-Schrieffer state that is an eigenstate 
of the number operator are derived and solved numerically for a 5 interaction. The errors due to the non-
conservation of particle number in the usual Bardeen-Cooper-Schrieffer theory are studied as a function of 
particle number, level density, and strength of the pairing interaction. A proof is given that for attractive 
pairing interactions the lowest energy solution corresponds always to real positive probability amplitudes 
vv, up. 

I. INTRODUCTION 

WH E N the theory of superconductivity had been 
developed,1-2 it was pointed out very early by 

Bohr, Mottelson, and Pines, that this theory might 
also be a useful tool in nuclear physics.3 Several authors 
have applied the theory to heavy and medium-heavy 
nuclei and have obtained encouraging results on the 
basis of a simple constant pairing interaction.4-8 In 
both formulations of the theory of superconductivity, 
the particle number is not conserved; only the expecta
tion value of the number operator is kept equal to the 
required particle number. 

One can easily project from the Bardeen-Cooper-
Schrieffer (BCS) state an eigenstate of the number 
operator.9 Bayman showed that starting from such an 
eigenstate of the number operator, we are led back to 
the BCS treatment as long as we evaluate the entering 
expectation values with the saddle-point method.9 A 
crude estimate shows that the saddle-point method can 
be trusted as long as the number of levels that are 
neither empty nor fully occupied is large compared to 
one.9 For applications of the theory in nuclear physics 
this condition is generally poorly fulfilled. Besides 
Bayman, Blatt considered trial wave functions of the 
BCS type that conserve the particle number.10 

Kerman, Lawson, and Macfarlane compared the re
sults of the superconductivity model with the results of 
an exact diagonalization assuming again a constant 
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pairing interaction.11 This investigation showed the 
results of the superconductivity model to be in re
markably good agreement with the results obtained by 
an exact diagonalization, even for small particle num
bers. Several papers related to our topic have been 
published this year and have just become known 
to us.12~15 

In a recent paper Hogaasen-Feldman investigated the 
components in the ground and first excited states of 
the pairing model that correspond to different numbers 
of particles.16 Meanwhile, various pairing-model calcu
lations have been performed with more realistic forces 
such as 8 forces,17 8 plus quadrupole forces,17 and finite 
range forces,18,19 also taking into account the effect of 
the residual interactions on the Hartree-Fock field. In 
view of this increasing number of applications, it 
seemed worthwhile to study more widely the errors ex
pected as a result of the nonconservation of particle 
number, formulating the pairing model consistently 
with conservation of particle number and comparing 
the final results with those of the BCS method. 

In Sec. I I , we derive the variational equations corre
sponding to a BCS state that conserves particle number. 

In Sec. I l l , we generalize this treatment to odd 
numbers of nucleons. In Sec. IV, we show that use of 
the saddle-point method for the evaluation of the con
tour integrals leads us back to the usual supercon
ductivity treatment. This, of course, can already be 
found in Bayman's paper.9 We include the proof for 
the sake of completeness. 

In Sec. V, we present results obtained from a numerical 
solution of our variational equations and compare them 
with the corresponding results of the BCS treatment. 
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The Appendix contains proof that we can restrict 
the variational parameters of the BCS state to real 
positive quantities without loss of generality. 

II. THE EULER-LAGRANGE EQUATIONS CORRE
SPONDING TO A BCS STATE THAT 

CONSERVES PARTICLE NUMBER 

In occupation number representation, the Hamil-
tonian for one sort of interacting nucleons has the form 

±v ±(vi,v2,V3,vi) 

in which af and av are creation and annihilation opera
tors, respectively, of particles in state v\ ev are single-
particle energies that should contain a part of the real 
nucleon-nucleon (N-N) interaction; 

where (J^I^I^I ^3^4) is the matrix element of the N-N 
interaction between antisymmetrized and normalized 
products of single-particle wave functions; and v stands 
for the set of quantum numbers that define a single-
particle state in the chosen representation. Using the 
7-coupling scheme we have 

v=(<r,j,m>0), 

-v=((r,j9m<0)3 

where j = total angular momentum, m = magnetic quan
tum number, o- = any additional quantum numbers that 
characterize the state. The distinction between states 
with positive and negative magnetic quantum numbers 
is, of course, merely a matter of convenience. We choose 
a representation in which the Hamiltonian without 
interaction is diagonal. We may think of the single-
particle energies ev as discrete energy levels of either a 
harmonic oscillator or a more realistic single-particle 
potential. 

Furthermore, we use a phase convention that is par
ticularly convenient in the BCS theory.8 I t can be 
related to the usual phase convention of Condon and 
Shortly20 in the following way: All single-particle states 
with negative magnetic quantum number m < 0 differ 
from the corresponding states in the Condon-Shortley 
(CS) convention by a factor (—y+l+m (/=orbital angu
lar momentum), 

\jlm)=(~\.y+l+m\jlm)Cs for m<0, (2.1') 

\jlm)=\jlm)cs for tn>0. (2.1") 

We describe the system by a trial state ^ that we 
obtain by projecting from the BCS state an eigenstate 
of the number operator N, 

N=T,±>aM,. (2.2) 
20 E. V. Condon and G. H. Shortley, The Theory of Atomic 

Spectra (Cambridge University Press, New York, 1959), p. 48. 

This state ^ can be written in the form9'21 

*^C(bd$rn«-1 I I ( f * , + ^ r V ) * o , (2.3) 

where $0 is the vacuum state, m is the number of 
nucleon pairs, and C is a normalization constant that 
we define by requiring 

<*!*>= 1, (2-4) 
or 

|C | 2 =l / ( -47T 2 )£o 0 . 

[For the definition of R0° see Eq. (2.8).] The contour 
may be any closed path around the origin. 

For interactions that exhibit negative pairing-type 
matrix elements we obtain the lowest energy solution 
for real positive uv and vv. (For proof see Appendix A.) 
Furthermore, we may require 

uv
2+vv

2=l (2.5) 

(see Appendix A). Henceforth, we will therefore con
sider the uv and vv as real positive quantities, subject 
to condition (2.5). We wish to remark at this point 
that the total energy 

E={*\H\*)/(*\<&) (2.6) 

remains unchanged if we multiply all the quotients 
vv/uv by a common factor x. Thus, even with (2.5) 
holding, the set of parameters uVy vv is not uniquely de
fined by the variational problem (see Appendix A). 

Next we ask for the Euler-Lagrange equations that 
must be fulfilled as a necessary condition for (ty | H | SF) 
to be stationary. The variations of \J>" are restricted by 
the subsidiary conditions (2.4) and (2.5). Disposing of 
the restrictive condition (2.4) by the use of a Lagrangian 
multiplier, we have to deal with the variational problem, 

5 { < ¥ | # | * > - E < ¥ | * > } = 0. (2.7) 

We define the following functions as residues of simple 
contour integrals in the complex plane: 

Rn
N(vh' —,vN) 

= — : (fdzz-^~n)-i n^ , l f . . . l W (« , 8 +CT, 2 ) . (2.8) 

In this paper we shall sometimes refer to these func
tions as "residuum integrals." The N states listed in 
parentheses are those that are to be excluded from the 
product Jlv(uv

2+vv
2z). For ^ = 0 the product contains 

No different factors (^„2+2w„2). Physically, N0 is the 
finite number of pair states (v, — v) that we take into 
consideration in a given problem. In Appendix B, we 
have put together some useful mathematical properties 
of the functions Rn

N(vi,- • *,vn). By definition, we put 

21 If not mentioned differently the indices are always supposed 
to run only over positive values of the magnetic quantum number. 
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residuum integrals that contain any pair of equal argu- In this formulation we have assumed 
ments equal to zero. Using the residuum integrals (2.8), _ , . 
we can write the total energy £ as €p~ €~vt \ • ) 

r i v * 2 D I / \ / D O M V T / ! D 1 M / D f l The sums are extended only over states with positive 
E = 2^evvvRl W / t f o + 4 1 , Vv-vv-vvvRx (v)/RQ magnetic quantum numbers. Variation of (2.9) with 

respect to vv and uv, with condition (2.5) holding, leads 
) v v l

2 v P 2
2 R 2 2 ( v h v 2 ) / R o ° to the set of equations 

(ev+Tv+AP)uvvv+Av(ul
2-vv

2) = 0. (2.11) 
+4:J^Vn-nv2„V2unvnuV2vP2R1

2(v1i>2)/Ro0. (2.9) _ 
»>m I n e quantities e„, r„, A„, A„ are denned as follows: 

*,= («,+27„^0[*iK')II/*o0, (2.12) 

r ,=4 E (7W1^+ F , - , 1 , _ > , 1 W ( ^ ) W , (2.13) 

A, = 2 L F^^-nM^nC^Cv^)]/^,0 , (2.14) 

I £ 2s \ * v\viv\vf\ * V\—V2V\—V2J'^V\ ^V2 

(Ro°y 

Ro1 MR** ( i w ) -Rx1 (v)R2* (*w) 

Ro1 « # 2 3 ( i w ) - Ri1 WRJ (VlViV) Rol M - Rx1 M 
+ 2 E Vn-nV2-nunvnuV2vV2 \-[evv

2-\-Yvv
2+2Avuvvv~] . (2.15) 

(Ro0)2 Ro° 

The quantities I \ and Av are the Hartree-Fock and The quantity A„ has no counterpart in the equations 
pairing potentials that appear in an analogous way in of the BCS theory, which contains instead a constant 
the BCS method. In our formulation the term with the chemical potential. This potential is chosen so as to 
diagonal matrix element Vv-w-v is included in the single- make the expectation value of the number operator 
particle energy e„ (see 2.12), since it contains the same equal to the required particle number. In the deriva-
residuum integral as the single-particle energies. This tions of the Eqs. (2.11) the quantity A„ arises from the 
is merely a matter of convenience. In Sec. V we shall differentiation of the residuum integrals with respect to 
rearrange the terms in such a way that they immedi- vv and uv (see Appendix B). In the formulation (2.15) 
ately yield the corresponding quantities of the BCS the recursion relations (Bl) and (B2) have been used. 
theory when the saddle-point method is applied. An equivalent formulation of A„ is 

R£(j>iv)-R£(viv) Rzz(nv2v)-R2KviV2v) 
A y — 2s \£vi~\£ V vi— J>1J>1— viJ^vi ~\~ ^ 2s \ * VIV2VIV21 * VI—V2V\— V2J^n ^ 2 

,1 R<P vlV2 R0° 

ft3(w)-R3(^¥) x Ri'M-Ro'M 
+2X) Vn-nn-y2unvnuV2vV2 \E , (2.16) 

v\V2 RQ° R(p 

where E is the total energy given by (2.9). Of course, the sum of the occupation probabilities is 
In the usual superconductivity theory, vv

2 is the equal to no, the number of pairs of particles 
probability for the pair of states (v, — v) being occupied, 
and uv

2 is the probability for this pair being unoccupied. ^ 
This is no longer true in our treatment. 2 s ev = t i o . 

Let us call ev
2 the probability of occupation, fv

2 the 
probability of nonoccupation of a pair of states (v, — v). 

Then I I L BLOCKING IN THE THEORY WITH 
CONSERVED PARTICLE NUMBER 

€ , 2 = < ^ | ( f l ^ L . O t ^ a - ^ > = ^ 2 C^i 1 W]/^o° , (2.17) _ . . , . , . . , - . . . 
x l v J ' ' i- \ /_J/ The pairing model has been extended to systems with 

fv
2= 1 — ev

2=ut?[Ro1 W]/RQ° . (2.18) an odd number of particles by blocking one of the avail-
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able pair states.8,22 In our theory with conserved par- quantities ev and Av. The total energy E has the form 
tide number, a system with an odd number of particles 
will be described by the state 

* ?=C fd{rn°-W I I (*,+ttfa,W)*o. (3.1) 

Of course, C is again the normalization constant given by 

| C | * = [ ( - 4 0 W ) : ] - \ (3.2) 

-,»,• 

"I ^ 2 ^ " I J > 2 \ ' »'l»'2J;l»/2 I ' »*1— V2n— V2J^fi Vv2 ' 

Ri\vv) 
X 

R2Z(VV\V2) 

Rt(?) 

"T"4t 2-1 V\\ * VV\VV\~\ * p-.p1p—p1)Vp1 

n0 is the number of pairs, the total particle number 
being (2wo+l). The quantum state v is occupied by the 
odd nucleon. The formulas that we will obtain, starting 
from state (3.1) can be almost guessed without calcula
tion : All residuum integrals will contain the additional 
argument i>, which means that this state is never avail
able to any pair of particles. The interaction of a pair 
of particles with the odd nucleon will be represented by €„ = {ev+2Vv-Vp-v)R^{vv)/Rol{v) 
a special term that will modify the definitions of the 

Ri2(vvi) 

Ri*(i>vii>2) 
— . (3.3) 

•Ro'OO 

The Euler-Lagrange equations have the form (2.11), 
with the coefficients 

I \ = 4 YtiV^n+Vr-nv-vXlR^v^yRJiv) , 
VI 

A„ = 2 £ Vv-.vn-vlunvnRi*(Pviv)/Ro1(v), 

R<?(vviv)—Riz{vviv) 

+2{V-vv-vv+V,-Vp-v)R^v)/R,l{v), (3.4) 

(3.5) 

(3.6) 

A , = £ ( € n + 2 F , -nK 

\ £ Z-i \ * V\V2V\V2~\ V Vl—V2V\—V%)Uv\ Vp2 

RoK*) 

Rz*{vviV2v) — RzA(vv\Vzv) 

£ 2-/ \ * vvivPil V p—pip—pi)Vpi • 

R<LZ(VVIV) — Riz (vv\v) 

ROKP) 

RoK?) 

~f~Z 2s * vi—vivi—v^vi^vi^v^vi 

R2i(vnv2v)-Rii(i>viviv) (E-ef) \_R?{vv)-R<?(i>v)~\ 

Rt(v) R«Kv) 
(3.7) 

Blocking of different states v will, in general, lead to proof only for the sake of completeness, using a slightly 
different total energies E. The lowest of these energies different formulation. 
is the ground state of the system with odd-particle We write the residuum integrals (2.8) in the following 
number; the other ones correspond to excited states, way: 
The generalization to the case of neutrons and protons 
is straightforward. The results are given in a laboratory 
report.23 

R nN{vv • •,!*) = — <fdze'Mxn»(z), (4.1) 

where 
NQ 

IV. USE OF THE SADDLE-POINT METHOD FOR THE 
EVALUATION OF THE RESIDUUM INTEGRALS 

/(*) = -no\nz+Z \n(up2+zvP
2); (4.2) 

Bayman9 has shown that using the saddle-point Xn
N(zyvv -vN) = zn~1/JlK^vv -vN(Up2+zvv

2). (4.3) 
method for the evaluation of the integrals Rn

N(viy •# • ,VN) 
is equivalent to the BCS treatment. He assumes that f(z) a n d *»*(*) are analytic functions of z on the path 
the saddle points corresponding to different integrals o f integration. The path of integration can be chosen so 
Rn

N are almost equal, and he shows that this is the t h a t 'lt c r o s s e s t h e s a d d l e P o i n t *<> of f(z) on a line of 
case for a constant level density. We reformulate his steepest descent, the saddle point being defined by 

22 V. G. Soloviev, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Skrifter 1, No. 11 (1961) with references to earlier work; S. Wahl-
born, Nucl. Phys. 37, 554 (1962). 

23 K. Dietrich, H. J. Mang, and J. Pradal, Lawrence Radiation 
Laboratory Report UCRL-11083 (unpublished). 

n0 V 
/'(*<>) = + E = 0 . (4.4) 

ZQ v Up2-\-ZoUv
2 

Thus, we can use the saddle-point method to evaluate 
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FIG. 1. Spectrum of single-particle 
energies for spherical nucleus. 
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h§ 

the residuum integrals (see Appendix C). We obtain 

1 ef^Xn
N(z0,vvvN) 

RUN(VV-VN) = 

ith 
(2*)* | /"(so) | 1/2 

^ 0 

/"(20) = - + E 
20 " (w„2+ZoKv2)2 

(4.5) 

(4.6) 

The total energy E (2.9) as well as the variational 
equations (2.11) contain only quotients of residuum 
integrals. By using the saddle-point method, the total 
energy E will be given by 

E=2Z 6A 2 Xi 1 (2o^ )+4 l Vr-^vfXfizw) 
V V 

22 (20,^1^2) 

+ 4 L F „ 1 _ „ 1 ^ V J « ^ , 1 « ^ , 2 X I 2 ( 2 ; O , J ' I ^ 2 ) • (4.7) 
J'lJ'2 

In Appendix A we shall show that the set of vv and uv 

is not unique. Given a set of uv and vv that corresponds 
to a saddle point Zo^l , we can always find a trans
formation [see (A4)] such that for the equivalent solu
tion uvvy of the variational equations the saddle point 
will be at zo=l. For 2 0 =1 Eq. (4.4) is the subsidiary 
condition required in the theory of superconductivity 

2 VP2 = (^BC S | E 0^0* | ^BC s) = ^0 (4.8) 

and (4.7) is the total energy of BCS. We can also argue 
in the following way: We may multiply E by Zo and 
consider the variation of Ez0, since E will be stationary 
if EZQ is stationary, and vice versa. Equation (4.4) can 
be written 

no~lL(zoVp2)/(uv
2+Zovv

2) = 0. (4.9) 

We observe that Ez0 as well as Eq. (4.9) contains z0 

only in the combination ZQ1I2VV. Therefore, we can choose 
2o=l without loss of generality. This is Bayman's line 
of argument. Thus, it is shown that using the saddle-
point method in the theory with conserved particle 
number is equivalent to the usual BCS treatment if 
we choose the saddle point at z0= 1. In this case all the 
residuum integrals become equal if they are evaluated 
with the saddle-point method. 

In the Euler-Lagrange equations (2.11), the term 
evuvvv contains the diagonal matrix element Vv-vv~v in 
the form 

2Vv-.vv-.vuvvvlR1
1{v)']/R^. 

We can write this term as 

2Vp-vv-lR1
1(v)/RQ»luvvv 

= Wp-pp-vlRi1{v)/R^~]v2UpVp+2V^vv^v 

XtRi'W/Ro^uMuS-Vp2). (4.10) 

So, if we define ev, Tp, Av as 

e^elRSM/Ro0!, 

Riivxv) 
1 p T: ̂ Lr \ * PP\PP\\ * V— PiP—PljVpl 

and 

IXp L 2^ V P—PV\~V\M'V\V\ 

+ 47; p—pp—pVp 

RilM 

R0
n 

(4.11) 

(4.12) 

I Jj V p— pp— pl/t/pVp~ 

RB° 
(4.13) 

these quantities go over into the corresponding quan-

FIG. 2. Spectrum of 
single-particle energies 
for deformed nucleus 
(?7Nilsson~4.2). 
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FIG. 3. Level occupation pk as a function of the (self) energies 
hkm for two pairs (w0 = 2) and different interaction strength. 
A solid line, theory with conserved-particle number; • dashed 
line, BCS theory. 

tities of the BCS theory if the saddle-point method is 
applied. 

V. NUMERICAL RESULTS 

We wish to study the differences between the BCS 
theory and the results of the theory with conserved 
particle number as a function of (a) the particle 
number, (b) the strength of the pairing type inter
action, and (c) the level spectrum. For this we use the 
special case of a level system with 15 pair states and an 
attractive 8 function potential of strength constant w. 
We consider separately the case of a level spectrum that 
corresponds to a spherically symmetric nucleus (see 
Fig. 1) and one that corresponds to an axially sym
metric, rather strongly deformed nucleus (see Fig. 2, 
deformation parameter rj of Nilsson24 — 4.2). 

In this publication, we only study the errors due to the 
nonconservation of the particle number. 

The results of the BCS theory with conservation of 
particle number will be compared to the results of an 
exact diagonalization in a forthcoming paper of Ras-
mussen and Rho. 

We have also performed some calculations with more 
complicated forces such as delta-plus quadrupole and 
finite-range forces and have found the expected result 
that the errors due to nonconservation of particle 
number do not depend much upon the special type of 
forces but mainly on the relative strength of the at
tractive short-range part of the force compared to the 
average level spacing. Thus, it is sufficient to study the 
question of nonconservation of particle number in the 
special example mentioned above. 

In Figs. 3-15 we plot on the abscissa the quantities 

h,= e,+r™*, (5.1) 

where e„ are the single-particle energies and I \ B C S is 
the Hartree-Fock potential Tv in the BCS theory, i.e., 

r , B 0 S = 4 i : ( 7 „ 1 „ l + 7 M 1 ^ 1 ) ^ 1
8 (5.2) 

In the case of our spherical nucleus, ?>= (angular 
momentum k, magnetic quantum number m). Physi
cally, hv is the average field acting on a particle in 
state v. I t depends, of course, on the interaction 
strength w and on the number of particles. 

We call the pairing interaction strong if the pairing 
potential A„BCS in the BCS treatment is larger in abso
lute value than the experimental odd-even mass dif
ferences where 

ZXj/ — 4 2S * v—vv\-—v\W'viVv (5.3) 

[The factor of 4 used in Eq. (5.3) is a different conven
tion than the factor of 2 used in Eq. (2.14).] The level 
spectrum we have chosen corresponds to a nuclear 
situation in the Pb208 region where the odd-even mass 
differences are known to be of the order of 1.0 MeV. 
This means that w = —1 must be regarded as a strong 
pairing interaction, ze/=—0.9 is still slightly stronger 
than realistic, w= —0.45 is slightly weaker than realistic, 
and w= —0.2 is extremely weak. 

In the case of the spherically symmetric nucleus the 
levels are degenerate. For this case, we define quan
tities ph as the sum of occupation probabilities for all 
the degenerate magnetic substates of the level with 
angular momentum k, 

ph — Yl efcm (5.4) 

-6 -5 -4 -3 -2 
hkm (MeV) 

24 S G Nilsson Kgl Danske Videnskab. Selskab, Mat. Fys. FIG. 4. Level occupation pk as a function of the (self) energies hkm 
Medd. 29, No. 16 (1955). for six pairs {n0 = 6) and different interaction strength. 
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-5 -4 
h k m (MeV) 

FIG. 5. Level occupation pk as a function of the (self) energies hkm 
for ten pairs (rto = 10). 

and ^ B C S is the corresponding quantity in the BCS 
theory, 

PJC 
BCS = L Vkm2 , (5.5) 

Figs. 3, 4, and 5 show pk and pkBC8 as a function of hkm 

for pairing interactions of different strength and for 
different pair numbers m. 

Besides realizing that the agreement between the 
results of the BCS theory and the theory with conserved 

1 " !" ' 

[_ 

'-X\ 
\ 

r \ 

- i „ ,i . 

i i 
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strongly occupied than a neighboring one with lower 
energy. This happens if the gain in pairing energy is 
larger than the loss in single-particle energies. This 
phenomenon is well known since the early days of the 
shell model.25 

FIG. 6. Accuracy of occupation probabilities in methods without 
conservation of particles for different pair numbers and strength 
constant W =—0.9. A solid line, BCS method with subsequent 
projection; • dashed line, BCS method. 

particle number is good, rather independently of the 
number of pairs, we mention that for strong and 
moderately strong pairing interaction, the BCS theory 
overestimates the dissolution of the Fermi surface; for 
weak pairing interactions it underestimates it. 

Furthermore, we observe from Fig. 3 that there may 
be cases in which a level of higher energy is more 

hkm (MeV) 

FIG. 7. Accuracy of occupation probabilities in methods with
out conservation of particles for different pair numbers and 
strength constant W— —0.45. 

A clearer picture of the errors connected with non-
conservation of particle number can be obtained from 
Figs. 6, 7, and 8. 

A procedure that is frequently used to improve the 
result of a BCS treatment consists in first solving the 
BCS equations and then projecting from the obtained 
BCS state the required eigenstate of the number 
operator. In this case, a new set of occupation proba-

h k m (MeV) 

FIG. 8. Accuracy of occupation probabilities in methods with
out conservation of particles for different pair numbers and 
strength constant W =—0.2. 

26 M. Goeppert-Meyer, J. H. D. Jensen, Elementary Theory of 
Nuclear Shell Structure (John Wiley & Sons, New York, 1955), 
p. 8. 



P A R T I C L E N U M B E R I N N U C L E A R P A I R I N G M O D E L B29 

-3 - 2 

hy (MeV) 

FIG. 9. Occupation probabilities for deformed nucleus (̂ Niisson 
«4.2), pair number nQ = 3; strength constant W= —1.0. A solid 
line, theory with conserved particle number; • dashed line, BCS 
theory. 

bilities ev
p2 is calculated according to (2.17) from the 

set of vv
2 that has been obtained as a solution of the 

BCS equations. 
In order to measure the accuracy of the BCS solution 

and of the solution obtained from it by projection, we 
define the quantities 

^ B c s = = [ ( ^ 2 _ ^ B C s 2 ) / e j ; 2 - ] X l 0 0 (5 # 6) 

and 
4 , p = [ ( e , 2 - O / « > 2 ] X l 0 0 (5.7) 

and plot them against hv for different pair numbers n0 

and different strength constants w. This is done in 
Figs. 6, 7, and 8 for the case of spherical nuclei. We can 
learn several things from these diagrams: 

(1) The smaller the occupation probabilities in ques
tion, the larger the deviations of the BCS and projec-

FIG. 10. Occupation probabilities for deformed nucleus (̂ Niisson 
~4.2), pair number Wo=6 and different strength constants. 

tion results from the ones with conservation of particle 
number. 

(2) The weaker the pairing type interactions the 
larger the deviations of the BCS and projection results 
from the ones of our method. In this connection, we 
stress that the projected solution is only nearer to the 
solution with conservation of particle number, if the 
pairing interaction is not too weak. 

(3) In all the cases considered, the solution obtained 
by projection yielded too small occupation probabilities 
for the weakly occupied levels. In other words, the pro
jected solution generally underestimates the smearing 
out of the Fermi surface. 

Figures 9 to 12 show the corresponding plots in the 
case of a level scheme corresponding to a deformed 
nucleus. Figures 9 and 10 show the occupation proba
bilities as a function of the single-particle energies hv. 
The distributions of energy levels are very smooth now, 

FIG. 11. Accuracy of occupation probabilities in methods with
out conservation of particles for deformed nucleus (??Niisson~4.2), 
strength constant w= —0.9. 

and no shell effects are discernible. Figures 11 and 12 
again show the fractional errors of the BCS treatment 
and of the BCS calculation with subsequent projection. 
Evidently, the statements we have made for the case 
of the spherical nucleus remain correct also for the 
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FIG. 12. Accuracy of occupation probabilities in methods with
out conservation of particles for deformed nucleus (?7Ni]sson~4.2), 
strength constant W~— 0.45. 
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FIG. 13. Accuracy of the saddle-point method for different pair 
numbers and spherical nucleus-strength constant W =—0.9. 

deformed nucleus. For the case of a strong pairing-type 
force the projected solution becomes a very good 
approximation. 

Generally speaking, the errors due to nonconserva-
tion of particle number are appreciable only for the 
small components of the wave function. These small 
components of the BCS state will usually differ from the 
corresponding components of the exact solution by 
amounts of the same order of magnitude. Preliminary 
calculations show that for rather weak, but not too weak, 
pairing interactions, conservation of particle number 
improves the BCS results appreciably as compared to 
the exact solution.26 At this point we would like to 
mention that once one has decided on solving the BCS 
equations with the help of a fast computer it is not 
much more difficult to solve the equations given in this 
paper. The residuum integrals Rn

N can be calculated 
from recursion relation (Bl) . Since this recursion rela
tion is very well suited for numerical calculation, a 
solution of Eqs. (2.11) is even not excessively more 
time consuming than a solution of the BCS equations, 
the time depending sensitively on the number of states 
iVo taken into account. 

Figures 13 and 14 are supposed to show the accuracy 
of the saddle-point method for the case of individual 
integrals Rn

N. We define the quantity Q£(v) as 

Qi'M^LL^M-^l/Ro'lXlOO. (5.8) 

The quantities Q^{v) are evaluated as a function of the 
set of vv

2 that is obtained from a solution of the BCS 
equations. Hence, if the saddle-point method were cor
rect, the quantities Qil{v) should be zero according to 
what has been said in Sec. V. The Q£{v) can also be 
written 

e i x W = (^ P 2 ~^ B C S 2 ) / (^ B C S 2 )X100 , (5.9) 

i.e., the differences between the occupation probabilities 

fl„BCS2 of the BCS theory and the occupation proba
bilities ev

p2 obtained by subsequent projection give a 
direct measure of the accuracy of the saddle-point 
method. For physical pairing interactions the true 
occupation probabilities e„2 usually lie between the 
quantities ev

p2 and z;„BCS2. This means that for these 
cases the BCS theory is more reliable than one would 
expect from considering the accuracy of the saddle-
point method. 

In the case of odd nuclei we obtain different nuclear 
states by putting the unpaired nucleon into different 
orbitals. The state of lowest energy is the ground state 
of the odd nucleus; the others represent excited states. 
These states are calculated in different approximations 
in the literature. If we do not conserve the particle 
number in the pairing model, we write the wave func
tion $v of an odd nucleus with the unpaired nucleon 
being in state v as 

(t>p^ a?* Yl^tiur+VvaSa-v^o, (5.10) 

and we obtain the excitation energy Ep from 

E , = (0*|ff|0*)-JEo, (5.11) 

where EQ is the ground-state energy of the odd nucleus. 
In crudest approximation (approximation Q in Fig. 15), 
the variational equations corresponding to an ordinary 
BCS state 

<l> = Jl(uv+vvav
fa^v)(j)Q (5.12) 

V 

are solved, and the expectation value of the number 
operator is kept equal to the required odd-particle 
number. The set of uv and vv thus obtained is used to 
calculate Ep according to (6.11). A better approxima
tion (approximation B in Fig. 15) consists in solving the 
Euler-Lagrange equations corresponding to the trial 
state (6.10). One can hope to improve this latter ap
proximation by projecting from solution B the cor
rect eigenstate of the number operator (approximation 
BP in Fig. 15). 

In Fig. 15, results of these three methods are com-

26 J. Rasmussen and M. Rho (private communication). 
FIG. 14. Accuracy of the saddle-point method for different pair 

numbers and spherical nucleus-strength constant W=— 0.45. 
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FIG. 15. Excitation energies of 
odd nuclei calculated with different 
approximations (see text). The 
level numbers signify the following 
Nilsson orbitals: §651 = 1; f 642 
= 2; f 633 = 3; i 530=4; §521=5; 
f 523 = 6; J 514=7. 

Q B BP C Q B BP C Q B BP C Q B BP C Q B BP C 

pared with the result of the theory with conserved 
particle number (method C). 

The cases of 13, 15, 17, 19, and 21 nucleons in 25 
Nilsson orbitals are considered. Again, a 5 force is used 
as pairing interaction. The orbitals correspond to the 
actinide region and the nuclei successively to Ac, Pa, Np, 
Am, Bk. Having neglected the neutron-proton inter
action, we do not put any emphasis upon obtaining 
agreement with experiment. Nevertheless, the ground-
state spins come out correctly. We are interested only 
in the comparison of results of the different methods. 

Approximation Q in almost all cases, differs the most 
from the results with conservation of particle numbers. 
The excitation energies differ usually by more than 
100% from the values obtained with the theory with 
conserved particle number. 

The blocking calculations (B) give relatively better 
results. However, there are still errors up to more than 
100 keV for excitation energies ranging from a few keV 
up to 700 keV, and neighboring levels sometimes come 
out in the wrong order. 

Subsequent projection (BP) improves the blocking 
calculations for the case of Ac, Pa, and Np, where the 
pairing interaction is relatively strong compared to the 
average level distance. In the spectrum of Am this pro
cedure brings the levels 2 and 6 into wrong order. In 
the case of Bk the solution obtained by subsequent 
projection is definitely of poorer accuracy than the 
simple blocking calculation. In this case, the pairing 
interaction is weak relative to the average level dis
tance. Thus, we find again that subsequent projection 
does not improve the BCS results if the pairing inter
action is relatively weak. 

I t should be mentioned that conserving the nucleon 
number generally leads to a smaller level density near 
the ground state as compared with all other methods. 
The only exception is the case of Pa where there is an 
accidental near degeneracy of three levels one of which 
is the ground state. 

Generally speaking, the errors due to nonconserva-
tion of particle number are larger for the excitation 
energies than for the occupation probabilities. Further
more, these errors are usually of different magnitude 
for neighboring even-even and odd-even nuclei. This 
question is studied in detail in a forthcoming paper by 
Nilsson.14 

Last but not least, it should be mentioned that the 
total energy E as obtained from the BCS theory, from 
the BCS theory with subsequent projection, or finally 
from our formulation with rigorous conservation of 
particle number differ usually only by fractions of a 
percent. The reason is that the main contributions to 
the total energy originate from strongly occupied levels. 
As we have seen before the occupation probabilities for 
strongly occupied levels are by far more accurate than 
the ones corresponding to weakly occupied levels. 
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APPENDIX A: DISCUSSION OF THE SOLUTION 
OF THE VARIATIONAL EQUATIONS 

We can write the trial state in the form 

* = C[I]>J <f I l ( l + ^ w V o 
J f«fl+l „ \ Uv J 

=c £—n (i+-r^wW (A1) 
J f«iri-i v \ uv / 

From this it follows that only the quotient vv/uv will 
be defined by the variational equations. We may, of 
course, retain the redundant parameters and impose as 
many conditions as there are superfluous parameters. 
We choose the conditions 

uv*uv+vv*vv= 1. (A2) 

The normalization coefficient C is given by 

< * | * > = 1 . (A3) 

The numerator and denominator on the right side of 
Eq. (Al) are sums of terms each containing a product 
of n0 factors vv/uv. Thus, if we multiply all quotients 
vv/uv with a common factor X, this factor cancels in 
(Al). This means that even with the restrictive condi
tions (A2), the set of uv, vv is determined only up to the 
following transformation between equivalent sets of 
Up* Vp • 

vv=Xvv/ (uv
2+XW)112; UP=UP/ (UP2+XV)112 . (A4) 

Physically meaningful quantities like the proba
bilities of occupation e„2 or the total energy E are in
variant under the transformation (A4). This ambiguity 
of the solutions does not exist in the BCS theory. Next, 
we wish to show that we may assume the vv and uv to 
be real without loss of generality. 

In the case of complex coefficients vv and uv, the total 
energy E is given by 

WW 
Ro° 

RiKv) 

Ro° 

^ ^ 2i^\* V1V2V1V2 l * V1--V2V1—V2)*'vi "^vi^P2 v 

R^{VW2) 

T ^ 21/ * v\—v\v2—v%Uv{Dvl ilp2 Vv2 

R0° 
(A5) 

We can write the uv and vv as 

vv = I vyIexp(i argVp); up=\uv\ exp(i arg^„). (A6) 

From (Al) we infer that we may put 

argw„=0 (A 7) 

without loss of generality. 

We choose the representation so that the matrix ele
ments of the nucleon-nucleon interaction are all real. 
Then we have the symmetry condition 

V vi~V1P2—V2 * v2— v<iv\— V\ , (A8) 

and with the aid of (A6) and (A7), we may write the 
energy as 

RUy) R?{y) 

£=2£e,M2 +4Z 7„ M |n , | s 

Ro° 

l ^ 2-J \ * V\V<LV\V% \ * V\—V2Vl—V<2,) J Vvi I I ^V\ 

Ri(yiv2) 
2 

+8 £ Vn ~viVi—V2\Upi\ \/Up2\ I Vpi J I Vp2 I 

n<v2 

Rl2(PlV2) 

Xcos[argv,8—arg^J . (A9) 
Ro° 

The < sign at the last sum means that any couple of 
quantum states (̂ 1,̂ 2) should appear only once, not 
also in the reversed order (^2,^1). The residuum inte
grals are all independent of the phases. 

Variation with regard to the quantities | uv | and | vv \ 
leads to the set of equations that we have derived in 
Sec. I I , the only difference being that all pairing-type 
matrix elements are multiplied by cos[argfl„2—arg^]. 
Variation with respect to the phases leads to the fol
lowing equations: 

]C Vv—w2—v21 Wvz I I Vv21 Csin£argz;,,2 

XRi2(vv2)/Ro°. (A10) 

Equation (A 10) has the trivial solution 

argfl„ = const. (All) 

Since a common phase factor of all parameters vv can 
be immediately replaced by + 1 , (All) corresponds to 
a solution with real, positive coefficients vv and uv, the 
one considered in Sec. I I . 

We assert that this solution corresponds to the lowest 
energy E, if the pairing-type matrix elements are all 
negative. This is the case for an attractive interaction 
and the phase convention defined in (2.1'), and (2.1"). 
Proof: Suppose we have found a solution of the Euler-
Lagrange equations (A 10) and (2.11) [(2.11) being 
modified by the phases in the above-mentioned way] 
with a set of phases argfl„^const, and E0 being the 
energy corresponding to this solution. Then we can 
certainly find a lower energy Ei<E0 by replacing all 
the cosine factors by 1. Since the set of \up\, \v„\ is 
consistent only with the set of nonconstant phases, 
Ei does not correspond to a solution of the variational 
problem. But we can now determine the minimum of 
Ei by variation of \vv\ and \uv\ keeping 

|«, |2+kl2=i. (A12) 
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This variation leads to the set of equations (2.11) and 
to a total energy E2 that is lower or equal to Eh 

E2<EI<EQ, (A13) 

if the second variation of (ty\H\ty) is positive in the 
neighborhood of our solution. This must be the case for 
any physically reasonable solution. 

APPENDIX B: SOME PROPERTIES OF 
THE RESIDUUM INTEGRALS 

From definition (2.8) of the residuum integral we can 
easily infer the following recursion relations: 

Rn+iN+1(w -vNv)vv
2+Rn

N+l(w -vNvW 
= RnN{vvVN), (Bl) 

RnN+l(vV -VNP)Rn+lN+1(vV >'VNv')-Rn
N(vv ~VN) 

XRn+lN+2(w -'PNPP') = Vv
2tRnN+1(w "VNv) 

XRn+2N+2(w -VNPP')-Rn+lN+1(vV ' ' w ) 

XRn+lN+Kvi'-VNVV,)J. (B2) 

Relation (Bl) is useful for numerical computation of 
the residuum integrals. In the limit of the saddle-point 
method (with saddle point at So=l) relation (Bl) 
becomes the normalization condition 

uv
2+vp

2=l 

of the usual superconductivity theory. Furthermore, 
we see from (Bl) that all the residuum integrals will 
have values between 0 and + 1 if the uv and vv fulfill 
condition (2.5). 

In the derivation of the Euler-Lagrange equations, 
we have to evaluate variational derivatives of the 
residuum integrals bRn

N(w • -VN)/8VV\ 

5Rn
N(w 

8vv 

•vN) r d 

Ldvv 

vp d 
~]RnN(vi •VN). 

From definition (2.8) of the residuum integral we can 
immediately see that the following relation holds: 

8RUN(W"PN) 

8vv 

-2vvlRn+1
N+\vv-vNiv) 

-RUN+1(VV-VN)1. (B3) 

From (B3) it becomes apparent how the term A £see 
(2.16)] comes to exist. 

APPENDIX C: USE OF THE SADDLE-POINT METHOD 

Integrals of the type 

• / 

/ = / e«'<"x(8)«k, (CI) 

where t is real and positive and / ( s ) , xO*) are analytic 
on the path of integration, can be approximated by the 

method of steepest descent (see, for instance, Ref. 27). 
If f(z) exhibits a saddle-point z0 somewhere between A 
and B, the path of integration should be chosen so as 
to cross the saddle point on a line of steepest descent. 
In this case the integral / can be approximated by 
(see Ref. 27) 

/«[V/<*o)x (So) (2ir)i/V«]/1 / / " (*o) 11/2 • (C2) 

In (C2) a is the angle between the positive real axis 
and the direction of the path in ZQ. If f"(zo)^Q, f(z) 
can be expanded near ZQ in the form 

/(*) = /(2o) + f(2-2o)2/"(2o)+- (C3) 

the direction of the path in z0 has to be such that 
(z—20)

2///(2o) is real and negative.27 

Equation (C2) represents the first term of an asymp
totic expansion (see Ref. 27, p. 502). The higher order 
terms of this expansion are, in general, difficult to 
obtain. Therefore, it is difficult to obtain a reliable 
estimate of the accuracy of formula (C2). The error 
will certainly be small if the dominant contributions 
to the integral come from the immediate vicinity of the 
saddle point. 

In the case of our residuum integrals the saddle point 
is at zo=l and we integrate over the unit circle. The 
quantities f(z), x(^) are defined in (4.2) and (4.3). Let 
\j/ be the angle where the exponential enz) has dropped 
to 1/e of its value at zo=l . The equation for \[/ is 
given by 

* = -
V2 v5 V2 

/"(*o)|1/2 | »o-E^ 4 | l / 2 \ZuM 2, , 2 I 1/2 
(C4) 

For the saddle-point method to be applicable, 2\p should 
be small compared to the total path length 2x, or 

(L «„V)1/2»v2/x= (C5) 

The product uvvv is different from zero only if vv as 
well as uv is substantially different from 0, i.e., only in 
the region II , where z/„2 drops from ~ 1 to almost 0 
(see Fig. 16). Bayman9 uses the approximation 

2>>V« io , (C6) 

FIG. 16. Occupation 
probabilities as a func
tion of the energy levels. 

27 H. and B. S. Jeffreys, Methods of Mathematical Physics (Cam
bridge University Press, New York, 1956), Chap. 17, 
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where tt is the number of states v in region II . With 
this we obtain the criterion 

\A£>M. (C7) 

The larger Q is, the more reliable the saddle-point 
method should be. Large 12 is favored by strong pairing 
interactions. On the other hand, the BCS state con

serves particle number in the case of a sharp Fermi 
surface. Thus, it is to be expected that in the limit of 
very small 12 the errors connected with the nonconserva-
tion of particle number should be small too,9 whereas 
the saddle-point method can be substantially wrong in 
this case. This is borne out by our numerical results 
(see Sec. V). 
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Separability of Center-of-Mass Motion in the Nuclear Shell Model 

M. A. NAGARAJAN 
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It is shown that one can find an orthogonal transformation that will enable one to split the motion of a 
many-body system to a center-of-mass motion and an internal motion. A particular orthogonal transforma
tion has been chosen which retains the independent-particle aspect of a harmonic-oscillator shell-model 
Hamiltonian. It is suggested that one could easily study and eliminate the states with spurious motions 
of the center of mass by a direct transformation of the shell-model wave function into the new coordinate 
system. 

1. INTRODUCTION 

IN calculations of nuclear structure using shell-model 
wave functions, the shell-model wave functions are 

constructed from independent-particle wave functions. 
These independent-particle wave functions describe the 
motion of a particle moving in a potential fixed in space. 
Because of the assumption of a potential fixed in space, 
the shell-model wave functions so obtained are not 
translationally invariant. I t has been recognized that 
the neglect of the center-of-mass motion will cause 
errors in the calculations of energies and transition 
matrix elements. But the extraction of the center-of-
mass motion leaves us only (A— 1) degrees of freedom 
and the internal coordinates cannot be treated sym
metrically ; therefore, the construction of antisymmetric 
states becomes very cumbersome. 

I t was first shown by Bethe and Rose1 that the anti-
symmetrized shell-model wave function for the lowest 
states in a harmonic-oscillator potential are always 
translationally invariant. However, some of the excited 
states of the nucleus could be describing a system whose 
center of mass is in motion. These "spurious states" 
were first recognized by Elliott and Skyrme.2 They 
pointed out that when two or more unclosed shells are 
involved, one has to investigate that the state has the 
proper center-of-mass motion. Their prescription is to 
form suitable linear combinations of shell-model wave 
functions to describe the proper center-of-mass motion. 

In our investigations, we have tried to find a co
ordinate transformation such that the total kinetic-

energy operator of the many-body Hamiltonian splits 
up into the center-of-mass kinetic energy and the re
maining kinetic energy of relative motion. This has 
been done for the case of two degrees of freedom by 
Talmi3 and Theiberger.4 In the particular case of the 
harmonic-oscillator potential, our choice of orthogonal 
transformation separates the center-of-mass part of the 
potential energy for a general ^-body problem. 

2. THE COORDINATE TRANSFORMATION 

We shall designate the original A -independent set of 
coordinates by (YI>Y2* * *>Ŷ )> and the transformed co
ordinates by (^o,?r • - ^ i - i ) . The transformation5 is 
given by6 

1 A 
& = Y t — L Yi i = 0 , l - - - 4 - l 

A-ii-i+i (2.1) 

Yo=0. 

The inverse transformation is given by 

1 
_ & i=l-->A 
*=i (A-j+1) {2.2) 

1 H. A. Bethe and M. E. Rose, Phys. Rev. 51, 283 (1937). 
2 J. P. Elliott and T. H. R. Skyrme, Proc. Roy. Soc. (London) 

A232, 561 (1955). 

3 1 . Talmi, Helv. Phys. Acta 25, 185 (1952). 
4 R. Thieberger, Nucl. Phys. 2, 533 (1956). 
6 Note that our first coordinate is ^o = — R, and is thus different 

from the corresponding one of Lipperheide. Our choice makes the 
transformation orthogonal. 

6 R. Lipperheide, Ann. Phys. (N. Y.) 17, 114 (1962); S. Hoch-
berg, H. S. W. Massey, and L. H. Underhill, Proc. Phys. Soc. 
(London) A67, 957 (1959). 


